Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.

نویسندگان

  • Bing Wu
  • Florian Hochstrasser
  • Ebrahim Akhondi
  • Noëmi Ambauen
  • Lukas Tschirren
  • Michael Burkhardt
  • Anthony G Fane
  • Wouter Pronk
چکیده

Seawater pretreatment by gravity-driven membrane (GDM) filtration at 40 mbar has been investigated. In this system, a beneficial biofilm develops on the membrane that helps to stabilize flux. The effects of membrane type, prefiltration and system configuration on stable flux, biofilm layer properties and dissolved carbon removal were studied. The results show that the use of flat sheet PVDF membranes with pore sizes of 0.22 and 0.45 μm in GDM filtration achieved higher stabilized permeate fluxes (7.3-8.4 L/m(2)h) than that of flat sheet PES 100 kD membranes and hollow fibre PVDF 0.1 μm membranes. Pore constriction and cake filtration were identified as major membrane fouling mechanisms, but their relative contributions varied with filtration time for the various membranes. Compared to raw seawater, prefiltering of seawater with meshes at sizes of 10, 100 and 1000 μm decreased the permeate flux, which was attributed to removal of beneficial eukaryotic populations. Optical coherence tomography (OCT) showed that the porosity of the biofouling layer was more significantly related with permeate flux development rather than its thickness and roughness. To increase the contact time between the biofilm and the dissolved organics, a hybrid biofilm-submerged GDM reactor was evaluated, which displayed significantly higher permeate fluxes than the submerged GDM reactor. Although integrating the biofilm reactor with the membrane system displayed better permeate quality than the GDM filtration cells, it could not effectively reduce dissolved organic substances in the seawater. This may be attributed to the decomposition/degradation of solid organic substances in the feed and carbon fixation by the biofilm. Further studies of the dynamic carbon balance are required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.

In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration...

متن کامل

Physical Backwash Optimization in Membrane Filtration Processes: Seawater Ultrafiltration Case

Seawater ultrafi ltration (UF) as a pretreatment of reverse osmosis (RO) process in a thermal power plant was investigated using a 100 kDa hollow fi ber membrane. The choice of the UF physical backwash conditions remains arbitrary or ensuing from a sensibility study. As the optimum must take into account the factors interactions, we led a response surface study to analy...

متن کامل

Comparative seawater RO pretreatment evaluation using bench - and pilot - scale testing

Comparative seawater RO pretreatment evaluation using benchand pilot-scale testing Desalination using seawater reverse osmosis (SWRO) technology is an important option available to water-scarce coastal regions. Recent full-scale experiences have shown that pretreatment is the key for this application of RO technology. In this article, a unique series of benchand pilot-scale tests are presented....

متن کامل

Membrane Distillation for Water Recovery and Its Fouling Phenomena

The total volume of water on Earth is circa 300 million cubic miles, with close to 98.0% being salt water and the remaining 2.0% fresh water. It has been increasingly more challenging to harvest fresh water from surface water, seawater and even from wastewater due to the combination of factors, viz. burgeoning population growth, rapid industrialization and climate change. Recently, membrane dis...

متن کامل

Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2016